Bridging the interop chasms

The dilemma for implementers is: how to standardise clinical content yet use it in different clinical scenarios? How to lock down clinical content yet express variation in clinician requirements. How to create clinical content standards when every day the scope, depth and detail of the content is dynamically evolving? And then if we somehow manage to specify the content enough to successfully implement our own system, how to make that solution interoperable with others?

Everyone is running around (often in circles) trying to find the holy grail of health IT, the ‘one ring to bind them all’ of standards and, more recently, the ‘Uber of healthcare’. The sheer number of approaches reflects that there is no clear single approach at this point, no clear winning strategy.

My proposal: if we want to achieve any degree of semantic interoperability in our clinical systems we need to standardise the clinical content, keeping it open and independent of any single implementation or messaging formalism.

I noticed that John Halamka, CIO at Harvard & Beth Israel Deaconess Medical Center, was quoted in a rather unappetising Forbes article yesterday – worth reading for the interesting content but please leave the title and analogy at the door. His quote:

“FHIR is the “HTML” of healthcare. It’s based on clinical modeling by experts but does not require implementer’s to understand those details. Historically healthcare standard were easy for designers and hard for implementor’s. FHIR has focused on ease of implementation.” 

Totally agree: FHIR is the newest technology on the block and indeed many are considering it the HTML of healthcare. It has created a massive buzz of excitement around the world. But remember that HTML itself is a content free zone. Without addition of content, HTML is essentially just a technical paradigm. Similarly, without high quality clinical content, FHIR runs the risk of just being a marvellous new technical approach, elegantly solving our current implementer nightmares. We need more…

I have blogged previously about my experience participating in a FHIR clinical connectathon this time last year: The challenge for FHIR: meeting real world clinician requirements. My opinion about FHIR is neutral. I am not a software engineer. However as a clinician it was not offering enough to meet my recording needs a year ago. Little of my world has been FHIRified since. No doubt the FHIR team have a strategy for that, it will evolve, sometime.

My potentially controversial position is that it does not necessarily follow logically that the clever minds who devised FHIR are best placed to develop the clinical content that will ensure FHIR’s success. The great majority of FHIR models created to date are related to the US domain and within a rather limited scope that are largely focused on supporting existing messaging requirements and simple document exchange.

This is not a FHIR-specific problem – it is ubiquitous across the healthIT ecosystem. We need to transition away from the traditional business approach where the technicians/vendors dictate what clinicians would have in their EHR, and the data structure is determined by software engineers who have to investigate, interpret and then attempt to represent the world and work of the clinician in every EHR. With the best of intentions from both sides there is still a massive semantic chasm between the two professions.

What most technical modellers haven’t yet grappled with is the huge scope of clinical content – the sheer breadth and depth is astounding and as new knowledge is discovered it is also dynamic and evolving, which only compounds an almost impossible task. Most clinical recording in systems to date is relatively simple – usually focused on the ‘one size fits all’ minimal data set approach to enable some information to be shared broadly. It certainly has had some limited success but how long will it be before we realise that we need to standardise more than the minimum data sets.

Minimum data sets are woefully inadequate when we need to represent the detail that clinicians record as part of day-to-day patient care, for patient-specific data exchange with other clinicians, to drive complex decision support, for data querying, aggregation, analysis. Patients vary, so that no one approach will suit all – the needs for a surgical patient, a neonate, a pregnant woman vary hugely. Clinicians vary, so that no one approach will suit all – generalist vs specialist; medical and nursing notes may focus on the same things but from a completely different point of view. Clinical contexts vary, so no one approach will suit all. Many aspects of clinical recording needs recurring, fractal patterns. There are homunculi, questionnaires, normal statements, graphs, video, audio. The ‘one size fits all’ approach to health data standards is an absolute myth – in fact, the truth is actually that one size fits none.

Take the timing of medications as an example. Just this one seemingly simple data element raises a huge number of challenges for EHRs. I challenge you to show me one system in the world that enables prescribing today at the following level of detail:

This is the level of detail that clinicians need today in their clinical work. Yet most clinical systems only cater for the ability to prescribe to the level of complexity where someone can take one tablet, three times a day, after meals. Even if you try to prescribe a skin cream, many systems are unable to do anything but represent it in the most rudimentary way.

Below is the mind map of the current Medication Order archetype:


You can see and download the corresponding archetype that is currently undergoing review here. This clinical content specification is the result of years of research, investigation of existing clinical systems, engagement with vendors and standards organisations and direct clinical informatician experience. The amount of work involved in specifying this common clinical order should not be underestimated, nor should it need to be undertaken ever again if we can get appropriate levels of agreement through international domain expert review! (Please register in CKM and adopt the archetype to participate in the international review.) It is massive. It is hugely complex.

Via a similar process, we have just achieved a consensus view on our Adverse Reaction Risk archetype: 12 review rounds completed; 91 participants from 16 countries; 182 total reviews; 0 face-to-face meetings! A core concept in any clinical system, with every system implementing it slightly differently. Now we have a line drawn in the sand, a starting point for being able to share adverse reaction data that has been designed and verified by clinicians, yet immediately computable. This work was done in collaboration with the FHIR/HL7 patient care community – note the joint copyright!

Archetypes bridge the semantic chasm between clinicians and software engineers.

Using archetypes as the means to represent clinical knowledge in an open, non-proprietary way is major breakthrough in our quest to “help kill the “golden goose” of proprietary EHR data”, as the Forbes article phrases it.

One does not have to be a rocket scientist to recognise that if we leverage the 400+ existing archetypes already in the international CKM, which already incorporates a huge breadth of clinician knowledge and expertise, we can kickstart any serious development of implementable resources for any technical paradigm willing to join in.

There is a powerful logic in actively separating out development of clinical content from the implementation formalism. In that way we can develop, agree and verify the clinical content specifications once. The resulting archetypes become the free, open standard representing the clinician’s knowledge in an implementation agnostic way. Subsequently technical transformations will be able to deliver the content to the implementer in any formalism that they choose. No longer just one archetype for openEHR implementation alone, but leverage the content to develop FHIR, CIMI, CDA, v2, UML resources… Now there is a vision!

Archetypes bridge the semantic chasm between implementation formalisms.

IMO this is probably the greatest benefit : the archetyped clinical content is created once, verified as fit for use by our clinicians, and remains as a governed infostructure resource for the next years, decades and beyond. Governance processes ensure that the archetypes are maintained and can evolve within a robust versioning framework. Different implementations will have the same, standardised clinical content.

One solid truth that we can rely on in the world of technology is that FHIR, HL7v2, HL7v3, CIMI, UML, AML, openEHR and other implementation formalisms will likely be overtaken at some time in the future. As sure as death and taxes. We really don’t want to start the process of building content for the each and every new technical invention that comes along.

Archetypes bridge the chasms created by the volatile fads and fashions in IT: our resulting ehealth INFOstructure will be a non-proprietary representation of clinical knowledge that can withstand and outlast the inevitable waves of technology as they come and go. 

Archetypes are a pragmatic and sustainable approach to interoperability: between professions; between implementations; beyond our current technologies!







Preventing health data ‘black holes’!

It really is not surprising that scientific data is disappearing all the time. But, oh, think of the value of this data – in terms of cost and knowledge. Irreplaceable.

The original article from is here: The vast majority of raw data from old scientific studies may now be missing.

Some excerpts:

A new survey of 20-year-old studies shows that poor archives and inaccessible authors make 90 percent of raw data impossible to find.

When a group of researchers tried to email the authors of 516 biological studies published between 1991 and 2011 and ask for the raw data, they were dismayed to find that more 90 percent of the oldest data (from papers written more than 20 years ago) were inaccessible. In total, even including papers published as recently as 2011, they were only able to track down the data for 23 percent.

“Some of the time, for instance, it was saved on three-and-a-half inch floppy disks, so no one could access it, because they no longer had the proper drives,” Vines says. Because the basic idea of keeping data is so that it can be used by others in future research, this sort of obsolescence essentially renders the data useless.

And preserving data is so important, it’s worth remembering, because it’s impossible to predict in which directions research will move in the future.

Seems to me that the openEHR approach to data definitions is an excellent candidate for preventing the health data ‘black hole’ too!

Non-proprietary, open data specifications are a key component for future-proofing irreplaceable clinical and research data.

To HIMSS12… or bust!

This blog, and hopefully some others following, will be about my thinking and considerations as I man an exhibition booth at the huge HIMSS12 conference for the first time next month…

Well, we’ve committed. We’re bringing some of the key Ocean offerings all across the ocean to HIMSS12 in Las Vegas next month. If it was just another conference, I wouldn’t be writing about it. But this is a seriously daunting prospect for me. I’ve presented papers, organised workshops, and run conference booths in many places over the years – in Sarajevo, Göteborg, Stockholm, Capetown, Singapore, London, Brisbane, Sydney, Melbourne – but this is sooooooo different!

The equivalent conference here in Australia would gather 600-800 delegates, maybe 40-50 exhibition booths. Most European conferences seem to be a similar size, admittedly these are probably with a more academic emphasis, rather than such a strong commercial bent, which might explain some of the size difference. By comparison, last year’s HIMSS conference had 31,500 attendees and over 1000 exhibition booths – no incorrect zeros here – just mega huge!

I can’t even begin to imagine how one can accommodate so many people in one location. I have never even visited HIMSS before – we are relying heavily on second hand reports. You may start to understand my ‘deer in headlights’ sensation as we plan our first approach to the US market in this way.

Ocean’s profile is much higher elsewhere internationally. Our activity in the London-based openEHR Foundation and our products/consulting skills have a reasonable profile in Australia and throughout much of Europe; and awareness is growing in Brazil as the first major region in South America. In many ways the US is the one of the last places for openEHR to make a significant impression – there are some pockets of understanding, but the limited uptake is clearly an orthogonal approach to the major commercial drivers in the US at present, however we are observing that this is slowly changing… hence our decision to run the gauntlet!

openEHR’s key objective is creation of a shareable, lifelong health record – the concept of an application-independent, multilingual, universal health record. The specification is founded upon the the notion of a health record as a collection of actual health information, in contrast to the common idea that a health record is an application-focused EHR or EMR. In the openEHR environment the emphasis is on the capture, storage, exchange and re-use of application-independent data based on shared definitions of clinical content – the archetypes and templates, bound to terminology. In openEHR we call them archetypes; in ISO, similar constructs are referred to as DCMs; and, most recently, there are the new models proposed by the CIMI initiative. It’s still all about the data!

So, we’re planning to showcase two products that have been designed and built to contribute to an openEHR-based health record – the Clinical Knowledge Manager (CKM), as the collective resource for the standardised clinical content, and OceanEHR, which provides the technical and medico-legal foundation for any openEHR-based health record – the EHR repository, health application platform and terminology services. In addition, we’ll be demonstrating Multiprac – an infection control system that uses the openEHR models and is built upon the OceanEHR foundation. So Multiprac is one of the first of a new generation of health record applications which share common clinical content.

This will be interesting experience as neither are probably the sort of product typical attendees will be looking for when visiting the HIMSS exhibition. So therein lies one of our major challenges – how to get in touch with the right market segment… on a budget!

We are seeking to engage with like-minded individuals or organisations who prioritise the health data itself and, in particular, those seeking to use shared and clinically verified definitions of data as a common means to:

  • record and exchange health information;
  • simplify aggregation of data and comparative analysis; and
  • support knowledge-based activities.

These will likely be national health IT programs; jurisdictions; research institutions; secondary users of data; EHR application developers; and of course the clinicians who would like to participate in the archetype development process.

So far I have in my arsenal:

  • The usual on-site marketing approach:
    • a booth – 13342
    • company and product-related material on the HIMSS Online Buyers Guide; and
    • marketing material – we have some plans for a simple flyer, with a mildly Australian flavour;
  • Leverage our website, of course;
  • Developing a Twitter plan for @oceaninfo specifically with activity in my @omowizard account to support it, and anticipating for some support from @openEHR – this will be a new strategy for me;
  • And I’m working on development of a vaguely ‘secret weapon’ – well, hopefully my idea will add a little ‘viral’ something to the mix.

So all in all, this will definitely be learning exercise of exponential proportions.

To those of you who have done this before, I’m very keen to receive any insight or advice at this point. What suggestions do you have to assist a small non-US based company with non-mainstream products make an impact at HIMSS?